Research Areas
Contact Us
Quick Order
Registration enables users to use special features of this website, such as past
order histories, retained contact details for faster checkout, review submissions, and special promotions.

Fields marked with a * are required.

Quick Order
Immunohistochemistry Services

Work with LifeSpan to design a custom immunohistochemistry to address your specific biological question. Outsource the entire localization process without having to worry about finding and characterizing target specific antibodies, sourcing and validating difficult-to-find tissues, and having the ability to interpret the resulting immunostaining in relation to complex human pathologies.

TCR Screening Services

Test your therapeutic antibodies in immunohistochemistry against a broad panel of normal frozen human tissue types in order to determine potential unintended binding. Our non-GLP TCR services are designed on the FDA recommendation outlined in their "Points to Consider in the Manufacture and Testing of Monoclonal Antibody Products for Human Use".

Research Areas
Cell Cycle Pathways
Protein Family And Group
Infectious Disease
Contact Us
2401 Fourth Avenue Suite 900
Seattle WA 98121
866-819-4732 (Toll Free North America
206-374-1102 (International)
866-206-6909 (Toll Free North America)
206-577-4565 (International)
How To Buy - Details about how to buy our products. - To submit a new order. - To submit questions about existing orders, pricing, availability, bulk quotes, froforma invoice requests, or other billing issues. - To request technical information about an LSBio product or its applications - To request information about fee-for-service contract IHC studies, IHC reports, distribution agreements, or general business development.
Worldwide Distributors List - To find your local distributor if you're not within the United States.
Registration enables users to use special features of this website, such as past
order histories, retained contact details for faster checkout, review submissions, and special promotions.

Fields marked with a * are required.

Quick Order
Home > Coronavirus > Disease Inhibitors

Coronavirus and SARS-CoV-2 Inhibitors

LSBio offers a range of research-use-only biochemicals that show potential inhibitory action against various coronaviruses such as SARS-CoV-2. These include direct inhibitors of coronavirus spike, nucleocapsid, protease, and polymerase proteins. We also offer various chemicals that block host proteins utilized by coronaviruses for infection and replication.


SARS-CoV-2 Spike (S) Protein Inhibitors

The spike (S) protein is responsible for attachment to and fusion with the host cell. For both SARS-CoV and SARS-CoV-2, the host receptor is known to be angiotensin converting enzyme 2 (ACE2) (Hoffmann, 2020). The spike protein is proteolytically cleaved into two subunits, S1 and S2. The S1 subunit binds to ACE2 presented on the host cell surface, and the S2 subunit is responsible for fusion with the host cell. Target cells include pneumocytes and macrophages expressing ACE2 in the lung, as well as ACE2-positive epithelial cells in the lung, gastrointestinal tract, and liver (cholangiocytes). The spike protein subunits are of interest as targets of vaccines; the S2 subunit is highly conserved and may be an effective pan-coronavirus target. SARS-CoV studies in monkeys immunized with full-length spike protein showed successful protection against subsequent infection (Shang, 2020).

Camostat Mesylate

Camostat mesylate is an inhibitor of the protease TMPRSS2. This host protease is used by SARS-CoV-2 for spike protein priming, and inhibition with camostat mesylate has been shown to block SARS-CoV-2 infection in lung cell lines (Hoffmann, 2020).


Emodin is an anthraquinone derivative extracted from Rheum tanguticum. It has been found to inhibit the SARS-CoV ORF3a protein and also block interactions between the SARS-CoV spike protein and the ACE2 receptor. It is of interest as a potential inhibitor of SARS-CoV-2 infection (Zhou, Y., 2020).

Back to Top

SARS-CoV-2 Membrane (M) Protein Inhibitors

The membrane (M) protein determines the shape of the SARS-CoV-2 viral envelope and organizes viral assembly through interaction with each additional structural protein (Chang, 2014).


Toremifene is a nonsteroidal selective estrogen receptor modulator (SERM) used in the treatment of metastatic breast cancer. It has also been found to block the fusion of viral and endosomal membranes by destabilizing the viral membrane glycoprotein and has been demonstrated to inhibit Ebola, MERS-CoV, and SARS-CoV viral replication in vitro using established cell lines. It is of interest as a potential inhibitor of SARS-CoV-2 infection (Zhou, Y., 2020).

Back to Top

SARS-CoV-2 Envelope (E) Protein Inhibitors

The envelope (E) protein is the smallest of the SARS-CoV-2 structural proteins, and it is incorporated into the virion envelope, though this represents only a small amount of total expressed envelope protein. A high proportion is also expressed inside the infected cell, where it is involved in viral assembly, budding, maturation, and propagation (Schoeman, 2019; Chang, 2020). The E protein sequence of SARS-CoV-2 has 90% amino acid overlap with other human coronavirus envelope proteins, which may allow for the development or repurposing of pan-coronavirus antiviral drugs that target this protein.

Belachinal, Macaflavanone E, and Vibsanol B are phytochemicals which have been shown in in silico models to potentially inhibit the activity of E protein (Gupta, M.G., 2020).

Back to Top

SARS-CoV-2 Papain-like Protease Inhibitors

There are two types of proteases expressed by SARS-CoV and SARS-CoV-2, the papain-like protease (PLpro, NSP3), and the CL-like protease (NSP5A & B, 3CLpro, Mpro). These proteases are responsible for cleaving the viral polyprotein and releasing nonstructural proteins (NSPs). These NSPs are vital for SARS-CoV-2 viral replication, maturation, and its overall life-cycle. In SARS-CoV, the papain-like protease (PLpro) inhibits type I interferon (IFN) by blocking IRF3 phosphorylation, which results in downstream inhibition of interferon induction and a reduction in the host’s innate immune response. This is thought to contribute to higher viral titer and leads to an increase in cell death and damage to infected and surrounding tissue (Matthews, 2014). The SARS-CoV-2 papain-like protease is thus of interest as a drug target to prevent viral replication and potentially reduce tissue damage (Báez-Santos, 2015).


Lopinavir is the most powerful inhibitor of CoV protease and Saquinavir is the least powerful. As per current guidelines, Lopinavir + Ritonavir is the recommended protease inhibitor combination for the treatment of COVID-19.

Mercaptopurine (6MP)

Mercaptopurine has been found to inhibit both SARS-CoV and MERS-CoV papain-like protease (PLpro), a protein necessary for viral maturation. Mercaptopurine acts as an anti-inflammatory agent by inhibiting interferon stimulation via proteases (Zhou, Y., 2020; Chen, X., 2009; Cheng, K.W., 2015).


Darunavir is a protease inhibitor. When used in combination with cobicistat it has been found to inhibit the 3CL-protease (3CLpro), thereby blocking viral replication.

Oseltamivir (Tamiflu)

Oseltamivir is a neuraminidase inhibitor, a competitive inhibitor of influenza's neuraminidase enzyme. The enzyme cleaves the sialic acid which is found on glycoproteins on the surface of human cells, which helps new virions to exit the cell. The use of oseltamivir in combination ASC09 or Ritonavir is currently under clinical study for treating coronavirus infections. (Harrison, C., 2020)


Nelfinavir is an HIV-1 protease inhibitor that has been demonstrated to also suppress SARS-CoV viral replication (Yamamoto, 2004). Nelfinavir is of interest in COVID-19 antiviral drug research, as it was found to inhibit the SARS-CoV-2 papain-like protease (plPro, mPro) when tested in Vero E6 cells (Xu, 2020). It has also been shown to inhibit inflammatory cytokines in vitro and may be effective in reducing the inflammatory response and severe innate immune activation resulting from COVID-19 and other viral diseases (Xu, 2020; Wallet, 2012).

Back to Top

SARS-CoV-2 NSP12 Polymerase Inhibitors

NSP12 RNA-dependent RNA polymerase (RdRP, RDR, RNA replicase) is an enzyme that catalyzes the replication of RNA from an RNA template. RdRP is a crucial viral enzyme in the life cycle of RNA viruses. In all positive-strand RNA viruses including SARS-CoV and SARS-CoV-2, RdRP constitutes the central catalytic subunit of the machinery involved in RNA synthesis and catalyzes the replication and transcription of the RNA genome (te Velthuis, 2010).


Acyclovir is a synthetic nucleoside analog that serves as a polymerase inhibitor. Acyclovir fleximers have shown to inhibit HCov-NL63 and MERS-CoV (Creative Biolabs, 2020).

Baloxavir marboxil

Baloxavir marboxil is a Cap-dependent endonuclease inhibitor and is used in combination with favipiravir, a nucleoside analog RdRP polymerase inhibitor, for SARS-CoV-2 treatment (Harrison, C., 2020).

Favipiravir (T-705)

Favipiravir is an RNA polymerase inhibitor used for the treatment of Influenza A and B. Although it has not shown strong activity against SARS-CoV-2 (Wang, M., 2020), it is still in trial for use in combination with other therapies (Harrison, C., 2020).


Emtricitabine acts as a reverse transcriptase inbibitor. Although coronaviruses do not have reverse transcriptase, repurposing of these inhibitors is being explored in concert with other antivirals for treatment of COVID-19 (Harrison, C., 2020).


Tenofovir acts as a guanosine analog reverse transcriptase inhibitor. In combination, Emtricitabine/Tenofovir inhibit viral RNA synthesis. These have been used in trials in combination with guanosine analogs and RNA synthesis inhibitors (Harrison, C., 2020).

Galidesivir (BCX4430, Immucillin-A)

Galidesivir tightly binds to RdRP and is used as a polymerase inhibitor (Elfiky, A.A., 2020).


Remdesivir is a broad spectrum anti-viral developed against Ebola virus and is being tried as an anti-replicase.


Ribavirin is an anti-polymerase drug which binds tightly to RdRP (Elfiky, A.A., 2020).


Sofosbuvir is an anti-HCV drug which targets RdRP (Elfiky, A.A., 2020).

Back to Top

SARS-CoV-2 Open Reading Frame 3 (ORF3a) Inhibitors

The ORF3a protein expressed by SARS-CoV-2 has 72% sequence homology with SARS-CoV ORF3a. In SARS-CoV, the ORF3a protein activates NF-κB and the NLRP3 inflammasome by inducing TRAF3-dependent ubiquitination of p105 and ASC (Kam-Leung Siu, 2019). There is evidence that the SARS-CoV-2 virus is less effective in activating the NLRP3 inflammasome and in suppressing the antiviral response when compared to SARS-CoV. More studies are needed to fully understand how the SARS-CoV-2 ORF3a protein influences the immune and inflammatory response as it pertains to COVID-19 disease progression (Yuen, 2020; Zeng, 2004).


Tranilast inhibits activation of the NLRP3 inflammasome pathway, which is activated by ORF3a.

Back to Top

  • Báez-Santos YM et al. The SARS-coronavirus papain-like protease: structure, function and inhibition by designed antiviral compounds. Antiviral Res. 2015 Mar;115:21-38. doi: 10.1016/j.antiviral.2014.12.015
  • Chang, C. K., Hou, M. H., Chang, C. F., Hsiao, C. D., & Huang, T. H. (2014). The SARS coronavirus nucleocapsid protein--forms and functions. Antiviral Research, 103, 39–50.
  • Chen, X., Chou, C. Y., & Chang, G. G. (2009). Thiopurine analogue inhibitors of severe acute respiratory syndrome-coronavirus papain-like protease, a deubiquitinating and deISGylating enzyme. Antiviral Chemistry & Chemotherapy, 19(4), 151–156.
  • Cheng, K. W., Cheng, S. C., Chen, W. Y., Lin, M. H., Chuang, S. J., Cheng, I. H., Sun, C. Y., & Chou, C. Y. (2015). Thiopurine analogs and mycophenolic acid synergistically inhibit the papain-like protease of Middle East respiratory syndrome coronavirus. Antiviral Research, 115, 9–16.
  • Creative Bioloabs. (2020). Acyclovir Fleximer for the Treatment of SARS-CoV-2.
  • Elfiky A. A. (2020). Ribavirin, Remdesivir, Sofosbuvir, Galidesivir, and Tenofovir against SARS-CoV-2 RNA dependent RNA polymerase (RdRp): A molecular docking study. Life Sciences, 117592.
  • Gupta, M. K., Vemula, S., Donde, R., Gouda, G., Behera, L., & Vadde, R. (2020). In-silico approaches to detect inhibitors of the human severe acute respiratory syndrome coronavirus envelope protein ion channel. Journal of Biomolecular Structure & Dynamics, 1–11.
  • Harrison, C. (2020, Feb 20). Coronavirus puts drug repurposing on the fast track. Nature Biotechnology.
  • Hoffmann, M., Kleine-Weber, H., Schroeder, S., Krüger, N., Herrler, T., Erichsen, S., Schiergens, T. S., Herrler, G., Wu, N. H., Nitsche, A., Müller, M. A., Drosten, C., & Pöhlmann, S. (2020). SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell, 181(2), 271–280.e8.
  • Kam-Leung Siu, Kit-San Yuen, Carlos Castaño-Rodriguez, Zi-Wei Ye, Man-Lung Yeung, Sin-Yee Fung, Shuofeng Yuan, Chi-Ping Chan, Kwok-Yung Yuen, Luis Enjuanes, and Dong-Yan Jin, The FASEB Journal 2019 33:8, 8865-8877
  • Matthews, K., Schäfer, A., Pham, A. et al. The SARS coronavirus papain like protease can inhibit IRF3 at a post activation step that requires deubiquitination activity. Virol J 11, 209 (2014).
  • Schoeman, D., & Fielding, B. C. (2019). Coronavirus envelope protein: current knowledge. Virology Journal, 16(1), 69.
  • Shang, W., Yang, Y., Rao, Y., & Rao, X. (2020). The outbreak of SARS-CoV-2 pneumonia calls for viral vaccines. NPJ Vaccines, 5, 18.
  • Siu, K. L., Yuen, K. S., Castaño-Rodriguez, C., Ye, Z. W., Yeung, M. L., Fung, S. Y., Yuan, S., Chan, C. P., Yuen, K. Y., Enjuanes, L., & Jin, D. Y. (2019). Severe acute respiratory syndrome coronavirus ORF3a protein activates the NLRP3 inflammasome by promoting TRAF3-dependent ubiquitination of ASC. FASEB Journal : Official Publication of the Federation of American Societies for Experimental Biology, 33(8), 8865–8877.
  • te Velthuis, A. J., van den Worm, S. H., Sims, A. C., Baric, R. S., Snijder, E. J., & van Hemert, M. J. (2010). Zn(2+) inhibits coronavirus and arterivirus RNA polymerase activity in vitro and zinc ionophores block the replication of these viruses in cell culture. PLoS Pathogens, 6(11).
  • Wallet, M. A., Reist, C. M., Williams, J. C., Appelberg, S., Guiulfo, G. L., Gardner, B., Sleasman, J. W., & Goodenow, M. M. (2012). The HIV-1 protease inhibitor nelfinavir activates PP2 and inhibits MAPK signaling in macrophages: a pathway to reduce inflammation. Journal of Leukocyte Biology, 92(4), 795–805.
  • Wang, M., Cao, R., Zhang, L., Yang, X., Liu, J., Xu, M., Shi, Z., Hu, Z., Zhong, W., & Xiao, G. (2020). Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell research, 30(3), 269–271.
  • Xu, Z., Yao, H., Shen, J., Wu, N., Xu, Y., Lu, X., zhu. w., & Li, L.-J. (2020). Nelfinavir Is Active Against SARS-CoV-2 in Vero E6 Cells. ChemRxiv. 12039888.v1
  • Yamamoto, N., Yang, R., Yoshinaka, Y., Amari, S., Nakano, T., Cinatl, J., Rabenau, H., Doerr, H. W., Hunsmann, G., Otaka, A., Tamamura, H., Fujii, N., & Yamamoto, N. (2004). HIV protease inhibitor nelfinavir inhibits replication of SARS-associated coronavirus. Biochemical and Biophysical Research Communications, 318(3), 719–725.
  • Yuen KS et al. Cell Biosci. 2020 Mar 16;10:40. doi: 10.1186/s13578-020-00404-4
  • Zeng, R., Yang, R. F., Shi, M. D., Jiang, M. R., Xie, Y. H., Ruan, H. Q., Jiang, X. S., Shi, L., Zhou, H., Zhang, L., Wu, X. D., Lin, Y., Ji, Y. Y., Xiong, L., Jin, Y., Dai, E. H., Wang, X. Y., Si, B. Y., Wang, J., Wang, H. X., … Wu, J. R. (2004). Characterization of the 3a protein of SARS-associated coronavirus in infected vero E6 cells and SARS patients. Journal of Molecular Biology, 341(1), 271–279.
  • Zhou, Y., Hou, Y., Shen, J., Huang, Y., Martin, W., & Cheng, F. (2020). Network-based drug repurposing for novel coronavirus 2019-nCoV/SARS-CoV-2. Cell Discovery, 6, 14.

All Coronavirus and SARS-CoV-2 Inhibitors

☰ Filters
Antibodies (72)
Biochemicals (54)
Chemical (34)
Chemical, Agonist (1)
Chemical, Antagonist (1)
Chemical, Inhibitor (2)
Primary (72)
6-Mercaptopurine Monohydrate (1)
7-Methyl-6-mercaptopurine (1)
ACE2 / ACE-2 (1)
Acyclovir (4)
Arbidol (1)
Baricitinib (2)
Baricitinib Phosphate (1)
BCX4430 (Galidesivir) (1)
Camostat Mesylate (1)
Chloroquine Diphosphate (4)
Cobicistat (1)
Coronavirus SARS-CoV-2 ORF3a Protein (4)
Coronavirus SARS-CoV-2 ORF6 Protein (1)
Coronavirus SARS-CoV-2 ORF7a Protein (2)
Coronavirus SARS-CoV-2 ORF8 Protein (3)
Darunavir (1)
E-64d (1)
Emodin (5)
Emtricitabine (1)
IL6R / IL6 Receptor (2)
Lopinavir (1)
Nelfinavir Mesylate (1)
Oseltamivir Phosphate (1)
PSI-7977 (2)
Ribavirin (2)
Ritonavir (1)
Ruxolitinib (4)
Saquinavir Mesylate (1)
SARS-CoV + SARS-CoV-2 S1 (1)
SARS-CoV-2 Envelope (1)
SARS-CoV-2 M Glycoprotein (2)
SARS-CoV-2 Nucleoprotein (20)
SARS-CoV-2 ORF10 Protein (1)
SARS-CoV-2 Orf1ab Polyprotein (4)
SARS-CoV-2 Spike Glycoprotein (28)
Sofosbuvir (1)
T-705 / Favipiravir (1)
Tenofovir Monohydrate (1)
TG101348 (Fedratinib) (1)
Thioguanine (2)
TNF Alpha (2)
Toremifene Base (1)
Tranilast (5)
Human (4)
Coronavirus SARS-CoV-2 (67)
IHC (2)
WB (65)
Block (2)
ELISA (50)
IF (2)
Inhb (2)
Neut (20)
rabbit (32)
human (40)
Product Group
All Helicase Inhibitors (4)
All Membrane (M) Protein Inhibitors (1)
All NSP12 Polymerase Inhibitors (13)
All ORF3a Inhibitors (5)
All Papain-like Protease Inhibitors (5)
All Spike (S) Protein Inhibitors (5)
Antibodies to Coronavirus-Associated Targets (1)
Anti-Coronavirus Antibodies (66)
Anti-SARS-CoV-2 Specific Antibodies (66)
Coronavirus Antibodies Proteins cDNAs (69)
Coronavirus Disease Inhibition (126)
Cytokine Release Syndrome (2)
Cytokine Release Syndrome Antibodies (2)
Humanized anti-SARS-CoV-2 Antibodies (37)
Unassigned Coronavirus Inhibitors (19)
IgG (32)
IgG,k (1)
IgG1,k (3)
polyclonal pc (31)
recombinant monoclonal rmc (41)
CR3022 (1)
D2E7 (Adalimumab) (2)
rhPM-1 (Tocilizumab) (1)
Tocilizumab (1)
Azide-free (5)
Biotin Conjugated (5)
HRP Conjugated (5)
Low Endotoxin (1)
Unconjugated (62)
ECD/RBD (12)
Extracellular Domain – ECD (9)
TNF alpha (2)
AUK 12-20 (1)
IL-6 receptor (1)
Receptor Binding Domain – RBD (1)
aa 10-26 (1)
aa 103-115 (1)
aa 1138-1153 (1)
aa 1214-1228 (1)
aa 126-275 (1)
aa 14-1213 (1)
aa 1510-1524 (1)
aa 154-168 (1)
aa 16-121 (1)
aa 16-30 (1)
aa 170-185 (1)
aa 183-199 (1)
aa 20-35 (1)
aa 204-218 (1)
aa 238-254 (1)
aa 245-260 (1)
aa 25-41 (1)
aa 284-300 (1)
aa 335-349 (1)
aa 39-55 (1)
aa 45-61 (1)
aa 55-69 (1)
aa 65-80 (1)
aa 76-89 (1)
aa 803-817 (1)
aa 83-98 (1)
aa 947-963 (1)
No (125)
Yes (1)
1004316-88-4 (1)
1187594-09-7 (2)
1187595-84-1 (1)
1190307-88-0 (3)
131707-23-8 (1)
143491-57-0 (1)
149845-06-7 (1)
154-42-7 (2)
155213-67-5 (1)
159989-65-8 (1)
192725-17-0 (1)
204255-11-8 (1)
206184-49-8 (1)
206361-99-1 (1)
249503-25-1 (1)
259793-96-9 (1)
288-32-4 (2)
309271-94-1 (1)
3324-79-6 (1)
36791-04-5 (2)
50-63-5 (4)
518-82-1 (5)
53902-12-8 (5)
59277-89-3 (4)
59721-29-8 (1)
6112-76-1 (1)
88321-09-9 (1)
89-00-9 (1)
89778-26-7 (1)
936091-26-8 (1)
941678-49-5 (4)
a crystalline solid (12)
a solid (1)
Beige Solid (1)
Khaki fine powder (1)
Light yellow green crystal powder (1)
Light yellow to Yellow Solid (1)
Light-yellow to green crystalline powder (1)
Liquid clear solution (1)
Off-white Solid (1)
Off-white solid. (1)
Off-white to White Solid (3)
Off-white to yellow powder (1)
Off-white to yellow powder. (1)
Orange solid (1)
Orange solid. (1)
Pale yellow solid (1)
Pale yellow to Yellow Solid (1)
White Crystal Powder (3)
White crystalline powder (1)
White Crystalline Powder (2)
White or almost white crystalline powder (2)
White powder (1)
White solid (1)
White Solid (4)
White to off white powder (4)
White to off-white solid. (1)
Yellow Crystalline Powder (1)
Yellow Solid (2)
Yellow to off white powder (1)
Greater than 87% (1)
Greater than 90% (1)
Greater than 95% (3)
Greater than 96% by HPLC, NMR (1)
Greater than 97% (1)
Greater than 98% (29)
Greater than 98% by HPLC (9)
Greater than 98% by NMR, TLC (1)
Greater than 98% by TLC (1)
Greater than 99% by HPLC (1)
Greater than 99% by HPLC Heavy Metals: Less than 10 ppm (2)
Greater than 99% by HPLC Heavy Metals: Less than 15 ppm (1)
Greater than 99% by TLC (1)
293F Cells (36)
CHO Cells (1)
IL6R / IL6 Receptor Human anti-Human Recombinant Monoclonal (AUK 12-20) (Tocilizumab) Antibody
200 µg/$845
IL6R / IL6 Receptor Antibody - IF staining of U937 cells.
IL6R / IL6 Receptor Human anti-Human Recombinant Monoclonal (IL-6 receptor) (rhPM-1 (Tocilizumab)) Antibody
0.2 mg/$405
7-Methyl-6-mercaptopurine Biochemical
White Crystalline Powder / Greater than 87%
10 mg/$105; 100 mg/$260; 50 mg/$180; 500 mg/$871
Camostat Mesylate Biochemical - Camostat (mesylate) Structure
C20H22N4O5• CH3SO3H
a crystalline solid / Greater than 98%
10 mg/$50; 25 mg/$105; 50 mg/$150
Liquid clear solution
500 ml/$290; 100 ml/$105
Biochemical - n-Octyl-ß-D-glucopyranoside: A non-ionic detergent
White Solid / Greater than 99% by TLC
25 g/$145; 100 g/$395
Biochemical - Quinolinic Acid Structure
Chemical, Agonist
Greater than 97%
1 g/$40; 10 g/$55; 50 g/$150
Biochemical - EZBlock™ Protease Inhibitor Cocktail V, EDTA-Free: A Protease inhibitor cocktail
White Solid / Greater than 98% by HPLC
5 mg/$245; 25 mg/$920
SARS-CoV-2 ORF10 Protein Rabbit anti-Coronavirus SARS-CoV-2 Polyclonal (aa 10-26) Antibody
Coronavirus SARS-CoV-2
100 µg/$415
Darunavir Biochemical - Darunavir Structure
a crystalline solid / Greater than 98%
1 mg/$75; 10 mg/$320; 5 mg/$185
Ribavirin Biochemical - Ribavirin Structure
White solid / Greater than 98% by NMR, TLC
100 mg/$50; 250 mg/$105
Ribavirin Biochemical
White Crystal Powder / Greater than 98%
100 mg/$125; 25 mg/$95; 50 mg/$105; 500 mg/$170
Thioguanine Biochemical - 6-Thioguanine Structure
Chemical, Inhibitor
Pale yellow solid / Greater than 96% by HPLC, NMR
100 mg/$50; 1 g/$130
Thioguanine Biochemical
Off-white to yellow powder / Greater than 90%
1 g/$170; 250 mg/$100; 500 mg/$130
Ruxolitinib Biochemical - Reversine: An A3 adenosine receptor antagonist
Off-white solid. / Greater than 99% by HPLC
5 mg/$190; 25 mg/$530
Ruxolitinib Biochemical - Ruxolitinib (free base) Structure
White to off-white solid. / Greater than 98% by HPLC
25 mg/$160; 5 mg/$75
Ruxolitinib Biochemical - Ruxolitinib Structure
Off-white Solid / Greater than 98%
5 mg/$265; 25 mg/$530
Ruxolitinib Biochemical - Ruxolitinib Structure
a crystalline solid / Greater than 98%
10 mg/$235; 25 mg/$370; 5 mg/$130
White crystalline powder / Greater than 99% by HPLC Heavy Metals: Less than 10 ppm
250 mg/$190; 1 g/$670
Acyclovir Biochemical - Calcitriol: An activator of the vitamin D receptor (VDR)
White Solid / Greater than 98% by HPLC
50 mg/$100; 250 mg/$320
Acyclovir Biochemical - Acyclovir Structure
a crystalline solid / Greater than 98%
100 mg/$130; 50 mg/$75; 500 mg/$515
Acyclovir Biochemical
White Crystalline Powder / Greater than 98%
100 mg/$140; 50 mg/$105; 500 mg/$500
Chemical, Antagonist
Light-yellow to green crystalline powder / Greater than 99% by HPLC Heavy Metals: Less than 15 ppm
25 mg/$235
Tranilast Biochemical - Tranilast Structure
Off-white to yellow powder. / Greater than 95%
10 mg/$195; 50 mg/$295
Tranilast Biochemical - Batimastat (MMP Inhibitor): A broad spectrum matrix metalloprotease (MMP) inhibitor
Yellow Solid / Greater than 98%
10 mg/$110; 50 mg/$370
Viewing 1-25 of 126 product results