Menu
Products
Services
Research Areas
Resources
Contact Us
Distributors
Login
Quick Order
Cart
Login
Registration enables users to use special features of this website, such as past
order histories, retained contact details for faster checkout, review submissions, and special promotions.


Fields marked with a * are required.

Login
Quick Order
Services
Immunohistochemistry Services

Work with LifeSpan to design a custom immunohistochemistry to address your specific biological question. Outsource the entire localization process without having to worry about finding and characterizing target specific antibodies, sourcing and validating difficult-to-find tissues, and having the ability to interpret the resulting immunostaining in relation to complex human pathologies.

TCR Screening Services

Test your therapeutic antibodies in immunohistochemistry against a broad panel of normal frozen human tissue types in order to determine potential unintended binding. Our non-GLP TCR services are designed on the FDA recommendation outlined in their "Points to Consider in the Manufacture and Testing of Monoclonal Antibody Products for Human Use".

Research Areas
Cell Cycle Pathways
Protein Family And Group
Contact Us
LSBio
2401 Fourth Avenue Suite 900
Seattle WA 98121
Phone:
866-819-4732 (Toll Free North America
206-374-1102 (International)
Fax:
866-206-6909 (Toll Free North America)
206-577-4565 (International)
How To Buy - Details about how to buy our products.
Orders@LSBio.com - To submit a new order.
Customer.Support@LSBio.com - To submit questions about existing orders, pricing, availability, bulk quotes, froforma invoice requests, or other billing issues.
Technical.Support@LSBio.com - To request technical information about an LSBio product or its applications
Sales@LSBio.com - To request information about fee-for-service contract IHC studies, IHC reports, distribution agreements, or general business development.
Worldwide Distributors List - To find your local distributor if you're not within the United States.
Login
Registration enables users to use special features of this website, such as past
order histories, retained contact details for faster checkout, review submissions, and special promotions.


Fields marked with a * are required.

Login
Quick Order

TP53BP1 / 53BP1

tumor protein p53 binding protein 1

Tumor protein p53 binding protein 1 binds to the central domain of p53 required for site-specific DNA binding thus inhibiting the ability of p53 to bind DNA. TP53BP1 also functions as a checkpoint protein with properties of a DNA double-strand break sensor. It is a putative substrate of ATM kinase and is phosphorylated in response to DNA damage and localizes to sites of double-strand breaks.

Gene Name: tumor protein p53 binding protein 1
Synonyms: TP53BP1, 53BP1, p202, p53-binding protein 1, p53-binding protein 53bp1, p53BP1
Target Sequences: NM_005657 NP_005648.1 Q12888

Publications (100)

1
Human Rif1, ortholog of a yeast telomeric protein, is regulated by ATM and 53BP1 and functions in the S-phase checkpoint. Silverman J, Takai H, Buonomo SB, Eisenhaber F, de Lange T. Genes & development. 2004 18:2108-19. [PubMed:15342490] [PMC:PMC515289]
2
Recent expansion of the telomeric complex in rodents: Two distinct POT1 proteins protect mouse telomeres. Hockemeyer D, Daniels JP, Takai H, de Lange T. Cell. 2006 126:63-77. [PubMed:16839877]
3
Leukocyte DNA damage after multi-detector row CT: a quantitative biomarker of low-level radiation exposure. Rothkamm K, Balroop S, Shekhdar J, Fernie P, Goh V. Radiology. 2007 242:244-51. [PubMed:17185671]
4
Protection of telomeres through independent control of ATM and ATR by TRF2 and POT1. Denchi EL, de Lange T. Nature. 2007 448:1068-71. [PubMed:17687332]
5
Regulation of phosphoglucose isomerase/autocrine motility factor activities by the poly(ADP-ribose) polymerase family-14. Yanagawa T, Funasaka T, Tsutsumi S, Hu H, Watanabe H, Raz A. Cancer research. 2007 67:8682-9. [PubMed:17875708]
6
Global chromatin compaction limits the strength of the DNA damage response. Murga M, Jaco I, Fan Y, Soria R, Martinez-Pastor B, Cuadrado M, Yang SM, Blasco MA, Skoultchi AI, Fernandez-Capetillo O. The Journal of cell biology. 2007 178:1101-8. [PubMed:17893239] [PMC:PMC2064646]
7
ATR signaling can drive cells into senescence in the absence of DNA breaks. Toledo LI, Murga M, Gutierrez-Martinez P, Soria R, Fernandez-Capetillo O. Genes & development. 2008 22:297-302. [PubMed:18245444] [PMC:PMC2216689]
8
Role of ATM in the telomere response to the G-quadruplex ligand 360A. Pennarun G, Granotier C, Hoffschir F, Mandine E, Biard D, Gauthier LR, Boussin FD. Nucleic acids research. 2008 36:1741-54. [PubMed:18263609] [PMC:PMC2275132]
9
Cell cycle control of telomere protection and NHEJ revealed by a ts mutation in the DNA-binding domain of TRF2. Konishi A, de Lange T. Genes & development. 2008 22:1221-30. [PubMed:18451109] [PMC:PMC2335317]
10
Excess MCM proteins protect human cells from replicative stress by licensing backup origins of replication. Ibarra A, Schwob E, Mndez J. Proceedings of the National Academy of Sciences of the United States of America. 2008 105:8956-61. [PubMed:18579778] [PMC:PMC2449346]
11
Transcription-coupled DNA double-strand breaks are mediated via the nucleotide excision repair and the Mre11-Rad50-Nbs1 complex. Guirouilh-Barbat J, Redon C, Pommier Y. Molecular biology of the cell. 2008 19:3969-81. [PubMed:18632984] [PMC:PMC2526702]
12
A chromatin-wide transition to H4K20 monomethylation impairs genome integrity and programmed DNA rearrangements in the mouse. Schotta G, Sengupta R, Kubicek S, Malin S, Kauer M, Calln E, Celeste A, Pagani M, Opravil S, De La Rosa-Velazquez IA, Espejo A, Bedford MT, Nussenzweig A, Busslinger M, Jenuwein T. Genes & development. 2008 22:2048-61. [PubMed:18676810] [PMC:PMC2492754]
13
ATM acts downstream of ATR in the DNA damage response signaling of bystander cells. Burdak-Rothkamm S, Rothkamm K, Prise KM. Cancer research. 2008 68:7059-65. [PubMed:18757420] [PMC:PMC2528059]
14
Impaired DNA double-strand break repair contributes to chemoresistance in HIF-1 alpha-deficient mouse embryonic fibroblasts. Wirthner R, Wrann S, Balamurugan K, Wenger RH, Stiehl DP. Carcinogenesis. 2008 29:2306-16. (WB; Mouse) [PubMed:18842680]
15
Functional dissection of human and mouse POT1 proteins. Palm W, Hockemeyer D, Kibe T, de Lange T. Molecular and cellular biology. 2009 29:471-82. [PubMed:18955498] [PMC:PMC2612509]
16
Death receptor-induced activation of the Chk2- and histone H2AX-associated DNA damage response pathways. Solier S, Sordet O, Kohn KW, Pommier Y. Molecular and cellular biology. 2009 29:68-82. [PubMed:18955500] [PMC:PMC2612481]
17
Rad50 is dispensable for the maintenance and viability of postmitotic tissues. Adelman CA, De S, Petrini JH. Molecular and cellular biology. 2009 29:483-92. [PubMed:19001091] [PMC:PMC2612516]
18
HPV-16 E7 reveals a link between DNA replication stress, fanconi anemia D2 protein, and alternative lengthening of telomere-associated promyelocytic leukemia bodies. Spardy N, Duensing A, Hoskins EE, Wells SI, Duensing S. Cancer research. 2008 68:9954-63. [PubMed:19047177] [PMC:PMC2597390]
19
Sister telomeres rendered dysfunctional by persistent cohesion are fused by NHEJ. Hsiao SJ, Smith S. The Journal of cell biology. 2009 184:515-26. [PubMed:19221198] [PMC:PMC2654126]
20
Heat-induced perturbations of DNA damage signaling pathways are modulated by molecular chaperones. Laszlo A, Fleischer I. Cancer research. 2009 69:2042-9. [PubMed:19244134]
21
MERIT40 controls BRCA1-Rap80 complex integrity and recruitment to DNA double-strand breaks. Shao G, Patterson-Fortin J, Messick TE, Feng D, Shanbhag N, Wang Y, Greenberg RA. Genes & development. 2009 23:740-54. [PubMed:19261746] [PMC:PMC2661612]
22
A mouse PRMT1 null allele defines an essential role for arginine methylation in genome maintenance and cell proliferation. Yu Z, Chen T, Hbert J, Li E, Richard S. Molecular and cellular biology. 2009 29:2982-96. [PubMed:19289494] [PMC:PMC2681996]
23
Induction of glutathione-dependent DNA double-strand breaks by the novel anticancer drug brostallicin. Guirouilh-Barbat J, Zhang YW, Pommier Y. Molecular cancer therapeutics. 2009 8:1985-94. [PubMed:19584235] [PMC:PMC2760303]
24
Stabilization of quadruplex DNA perturbs telomere replication leading to the activation of an ATR-dependent ATM signaling pathway. Rizzo A, Salvati E, Porru M, D'Angelo C, Stevens MF, D'Incalci M, Leonetti C, Gilson E, Zupi G, Biroccio A. Nucleic acids research. 2009 37:5353-64. [PubMed:19596811] [PMC:PMC2760797]
25
Loss of histone deacetylase 4 causes segregation defects during mitosis of p53-deficient human tumor cells. Cadot B, Brunetti M, Coppari S, Fedeli S, de Rinaldis E, Dello Russo C, Gallinari P, De Francesco R, Steinkhler C, Filocamo G. Cancer research. 2009 69:6074-82. [PubMed:19622775]
26
Intercellular communication of cellular stress monitored by gamma-H2AX induction. Dickey JS, Baird BJ, Redon CE, Sokolov MV, Sedelnikova OA, Bonner WM. Carcinogenesis. 2009 30:1686-95. [PubMed:19651821] [PMC:PMC2757548]
27
Cell cycle-dependent role of MRN at dysfunctional telomeres: ATM signaling-dependent induction of nonhomologous end joining (NHEJ) in G1 and resection-mediated inhibition of NHEJ in G2. Dimitrova N, de Lange T. Molecular and cellular biology. 2009 29:5552-63. [PubMed:19667071] [PMC:PMC2756883]
28
The mre11 complex and the response to dysfunctional telomeres. Attwooll CL, Akpinar M, Petrini JH. Molecular and cellular biology. 2009 29:5540-51. [PubMed:19667076] [PMC:PMC2756889]
29
Human papillomavirus 16 E7 oncoprotein attenuates DNA damage checkpoint control by increasing the proteolytic turnover of claspin. Spardy N, Covella K, Cha E, Hoskins EE, Wells SI, Duensing A, Duensing S. Cancer research. 2009 69:7022-9. [PubMed:19706760] [PMC:PMC2737077]
30
Telomeric DNA mediates de novo PML body formation. Brouwer AK, Schimmel J, Wiegant JC, Vertegaal AC, Tanke HJ, Dirks RW. Molecular biology of the cell. 2009 20:4804-15. [PubMed:19793919] [PMC:PMC2777109]
31
Mammalian Rif1 contributes to replication stress survival and homology-directed repair. Buonomo SB, Wu Y, Ferguson D, de Lange T. The Journal of cell biology. 2009 187:385-98. [PubMed:19948482] [PMC:PMC2779251]
32
Telomere protection by TPP1 is mediated by POT1a and POT1b. Kibe T, Osawa GA, Keegan CE, de Lange T. Molecular and cellular biology. 2010 30:1059-66. [PubMed:19995905] [PMC:PMC2815557]
33
The RNF8/RNF168 ubiquitin ligase cascade facilitates class switch recombination. Ramachandran S, Chahwan R, Nepal RM, Frieder D, Panier S, Roa S, Zaheen A, Durocher D, Scharff MD, Martin A. Proceedings of the National Academy of Sciences of the United States of America. 2010 107:809-14. (ICC, WB; Mouse) [PubMed:20080757] [PMC:PMC2818930]
34
Wild-type p53-induced phosphatase 1 dephosphorylates histone variant gamma-H2AX and suppresses DNA double strand break repair. Moon SH, Lin L, Zhang X, Nguyen TA, Darlington Y, Waldman AS, Lu X, Donehower LA. The Journal of biological chemistry. 2010 285:12935-47. [PubMed:20118229] [PMC:PMC2857113]
35
Selective targeting of radiation-resistant tumor-initiating cells. Zhang M, Atkinson RL, Rosen JM. Proceedings of the National Academy of Sciences of the United States of America. 2010 107:3522-7. (ICC, Flo; Mouse) [PubMed:20133717] [PMC:PMC2840501]
36
Differential requirement for H2AX and 53BP1 in organismal development and genome maintenance in the absence of poly(ADP)ribosyl polymerase 1. Orsburn B, Escudero B, Prakash M, Gesheva S, Liu G, Huso DL, Franco S. Molecular and cellular biology. 2010 30:2341-52. [PubMed:20231360] [PMC:PMC2863712]
37
Ionizing radiation-induced long-term expression of senescence markers in mice is independent of p53 and immune status. Le ON, Rodier F, Fontaine F, Coppe JP, Campisi J, DeGregori J, Laverdire C, Kokta V, Haddad E, Beausjour CM. Aging cell. 2010 9:398-409. [PubMed:20331441] [PMC:PMC2894262]
38
LIM-domain proteins TRIP6 and LPP associate with shelterin to mediate telomere protection. Sheppard SA, Loayza D. Aging. 2010 2:432-44. [PubMed:20634563] [PMC:PMC2933890]
39
Substance P inhibits natural killer cell cytotoxicity through the neurokinin-1 receptor. Monaco-Shawver L, Schwartz L, Tuluc F, Guo CJ, Lai JP, Gunnam SM, Kilpatrick LE, Banerjee PP, Douglas SD, Orange JS. Journal of leukocyte biology. 2011 89:113-25. [PubMed:20940324] [PMC:PMC3004520]
40
The p53/p21(WAF/CIP) pathway mediates oxidative stress and senescence in dyskeratosis congenita cells with telomerase insufficiency. Westin ER, Aykin-Burns N, Buckingham EM, Spitz DR, Goldman FD, Klingelhutz AJ. Antioxidants & redox signaling. 2011 14:985-97. (ICC; Human) [PubMed:21087144] [PMC:PMC3043957]
41
DNA-SCARS: distinct nuclear structures that sustain damage-induced senescence growth arrest and inflammatory cytokine secretion. Rodier F, Muoz DP, Teachenor R, Chu V, Le O, Bhaumik D, Copp JP, Campeau E, Beausjour CM, Kim SH, Davalos AR, Campisi J. Journal of cell science. 2011 124:68-81. [PubMed:21118958] [PMC:PMC3001408]
42
Poly(ADP-ribose) polymerase and XPF-ERCC1 participate in distinct pathways for the repair of topoisomerase I-induced DNA damage in mammalian cells. Zhang YW, Regairaz M, Seiler JA, Agama KK, Doroshow JH, Pommier Y. Nucleic acids research. 2011 39:3607-20. [PubMed:21227924] [PMC:PMC3089458]
43
Astrocyte dysfunction associated with cerebellar attrition in a Nijmegen breakage syndrome animal model. Galron R, Gruber R, Lifshitz V, Lu H, Kirshner M, Ziv N, Wang ZQ, Shiloh Y, Barzilai A, Frenkel D. Journal of molecular neuroscience : MN. 2011 45:202-11. (ICC, IHC, IHC-P; Mouse) [PubMed:21279473]
44
The BRCA1-RAP80 complex regulates DNA repair mechanism utilization by restricting end resection. Coleman KA, Greenberg RA. The Journal of biological chemistry. 2011 286:13669-80. [PubMed:21335604] [PMC:PMC3075711]
45
The autophagy protein Atg7 is essential for hematopoietic stem cell maintenance. Mortensen M, Soilleux EJ, Djordjevic G, Tripp R, Lutteropp M, Sadighi-Akha E, Stranks AJ, Glanville J, Knight S, Jacobsen SE, Kranc KR, Simon AK. The Journal of experimental medicine. 2011 208:455-67. [PubMed:21339326] [PMC:PMC3058574]
46
Replication stress induces 53BP1-containing OPT domains in G1 cells. Harrigan JA, Belotserkovskaya R, Coates J, Dimitrova DS, Polo SE, Bradshaw CR, Fraser P, Jackson SP. The Journal of cell biology. 2011 193:97-108. [PubMed:21444690] [PMC:PMC3082192]
47
HP1alpha recruitment to DNA damage by p150CAF-1 promotes homologous recombination repair. Baldeyron C, Soria G, Roche D, Cook AJ, Almouzni G. The Journal of cell biology. 2011 193:81-95. (ICC, WB; Mouse, Human) [PubMed:21464229] [PMC:PMC3082177]
48
Matrix metalloproteinases and their inhibitors and inducer in gestational trophoblastic diseases and normal placenta. Singh M, Kindelberger D, Nagymanyoki Z, Ng SW, Quick CM, Elias KM, Yamamoto H, Fichorova R, Fulop V, Berkowitz RS. Gynecologic oncology. 2011 122:178-82. (IHC-P; Human) [PubMed:21514631]
49
Microsatellite instability in pediatric high grade glioma is associated with genomic profile and differential target gene inactivation. Viana-Pereira M, Lee A, Popov S, Bax DA, Al-Sarraj S, Bridges LR, Stvale JN, Hargrave D, Jones C, Reis RM. PloS one. 2011 6:e20588. (ICC; Human) [PubMed:21637783] [PMC:PMC3102740]
50
Survivin inhibition and DNA double-strand break repair: a molecular mechanism to overcome radioresistance in glioblastoma. Reichert S, Rdel C, Mirsch J, Harter PN, Tomicic MT, Mittelbronn M, Kaina B, Rdel F. Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology. 2011 101:51-8. (ICC, WB; Human) [PubMed:21852011]
51
DNA-damage response and repair activities at uncapped telomeres depend on RNF8. Peuscher MH, Jacobs JJ. Nature cell biology. 2011 13:1139-45. [PubMed:21857671]
52
A stress response pathway regulates DNA damage through 2-adrenoreceptors and -arrestin-1. Hara MR, Kovacs JJ, Whalen EJ, Rajagopal S, Strachan RT, Grant W, Towers AJ, Williams B, Lam CM, Xiao K, Shenoy SK, Gregory SG, Ahn S, Duckett DR, Lefkowitz RJ. Nature. 2011 477:349-53. [PubMed:21857681]
53
Oncogenic YAP promotes radioresistance and genomic instability in medulloblastoma through IGF2-mediated Akt activation. Fernandez-L A, Squatrito M, Northcott P, Awan A, Holland EC, Taylor MD, Nahl Z, Kenney AM. Oncogene. 2012 31:1923-37. [PubMed:21874045] [PMC:PMC3583298]
54
DNA damage response is suppressed by the high cyclin-dependent kinase 1 activity in mitotic mammalian cells. Zhang W, Peng G, Lin SY, Zhang P. The Journal of biological chemistry. 2011 286:35899-905. [PubMed:21878640] [PMC:PMC3195557]
55
53BP1 contributes to a robust genomic stability in human fibroblasts. Fink LS, Roell M, Caiazza E, Lerner C, Stamato T, Hrelia S, Lorenzini A, Sell C. Aging. 2011 3:836-45. [PubMed:21931182] [PMC:PMC3227449]
56
Pteridium aquilinum and its ptaquiloside toxin induce DNA damage response in gastric epithelial cells, a link with gastric carcinogenesis. Gomes J, Magalhes A, Michel V, Amado IF, Aranha P, Ovesen RG, Hansen HC, Grtner F, Reis CA, Touati E. Toxicological sciences : an official journal of the Society of Toxicology. 2012 126:60-71. [PubMed:22143989]
57
WRN helicase regulates the ATR-CHK1-induced S-phase checkpoint pathway in response to topoisomerase-I-DNA covalent complexes. Patro BS, Frhlich R, Bohr VA, Stevnsner T. Journal of cell science. 2011 124:3967-79. [PubMed:22159421] [PMC:PMC3244981]
58
IL-7R deficiency in p53null mice exacerbates thymocyte telomere erosion and lymphomagenesis. Kibe R, Zhang S, Guo D, Marrero L, Tsien F, Rodriguez P, Khan S, Zieske A, Huang J, Li W, Durum SK, Iwakuma T, Cui Y. Cell death and differentiation. 2012 19:1139-51. (ICC; Mouse) [PubMed:22281704] [PMC:PMC3374079]
59
Radiation-inducible immunotherapy for cancer: senescent tumor cells as a cancer vaccine. Meng Y, Efimova EV, Hamzeh KW, Darga TE, Mauceri HJ, Fu YX, Kron SJ, Weichselbaum RR. Molecular therapy : the journal of the American Society of Gene Therapy. 2012 20:1046-55. [PubMed:22334019] [PMC:PMC3345982]
60
RNF8- and RNF168-dependent degradation of KDM4A/JMJD2A triggers 53BP1 recruitment to DNA damage sites. Mallette FA, Mattiroli F, Cui G, Young LC, Hendzel MJ, Mer G, Sixma TK, Richard S. The EMBO journal. 2012 31:1865-78. [PubMed:22373579] [PMC:PMC3343333]
61
Shelterin dysfunction and p16(INK4a)-mediated growth inhibition in HIV-1-specific CD8 T cells. Lichterfeld M, Cung T, Seiss K, Rosenberg ES, Pereyra F, Yu XG. Journal of virology. 2012 86:5533-40. (ICC; Human) [PubMed:22398292] [PMC:PMC3347267]
62
Telomeric DNA damage is irreparable and causes persistent DNA-damage-response activation. Fumagalli M, Rossiello F, Clerici M, Barozzi S, Cittaro D, Kaplunov JM, Bucci G, Dobreva M, Matti V, Beausejour CM, Herbig U, Longhese MP, d'Adda di Fagagna F. Nature cell biology. 2012 14:355-65. (ICC; Human) [PubMed:22426077]
63
Telomeres are favoured targets of a persistent DNA damage response in ageing and stress-induced senescence. Hewitt G, Jurk D, Marques FD, Correia-Melo C, Hardy T, Gackowska A, Anderson R, Taschuk M, Mann J, Passos JF. Nature communications. 2012 3:708. (ICC; Human) [PubMed:22426229] [PMC:PMC3292717]
64
Chk1 suppresses bypass of mitosis and tetraploidization in p53-deficient cancer cells. Wilsker D, Chung JH, Bunz F. Cell cycle (Georgetown, Tex.). 2012 11:1564-72. (ICC, WB; Human) [PubMed:22433954] [PMC:PMC3341228]
65
The ATPase activity of MLH1 is required to orchestrate DNA double-strand breaks and end processing during class switch recombination. Chahwan R, van Oers JM, Avdievich E, Zhao C, Edelmann W, Scharff MD, Roa S. The Journal of experimental medicine. 2012 209:671-8. (WB; Mouse) [PubMed:22451719] [PMC:PMC3328365]
66
The activation of DNA damage detection and repair responses in cleavage-stage rat embryos by a damaged paternal genome. Grenier L, Robaire B, Hales BF. Toxicological sciences : an official journal of the Society of Toxicology. 2012 127:555-66. (ICC; Rat) [PubMed:22454429] [PMC:PMC3355317]
67
A new non-catalytic role for ubiquitin ligase RNF8 in unfolding higher-order chromatin structure. Luijsterburg MS, Acs K, Ackermann L, Wiegant WW, Bekker-Jensen S, Larsen DH, Khanna KK, van Attikum H, Mailand N, Dantuma NP. The EMBO journal. 2012 31:2511-27. (ICC; Mouse) [PubMed:22531782] [PMC:PMC3365417]
68
Oncogene-induced telomere dysfunction enforces cellular senescence in human cancer precursor lesions. Suram A, Kaplunov J, Patel PL, Ruan H, Cerutti A, Boccardi V, Fumagalli M, Di Micco R, Mirani N, Gurung RL, Hande MP, d'Adda di Fagagna F, Herbig U. The EMBO journal. 2012 31:2839-51. (ICC, IHC; Human) [PubMed:22569128] [PMC:PMC3395091]
69
Metabolism of Cr(VI) by ascorbate but not glutathione is a low oxidant-generating process. Wong V, Armknecht S, Zhitkovich A. Journal of trace elements in medicine and biology : organ of the Society for Minerals and Trace Elements (GMS). 2012 26:192-6. (ICC; Human) [PubMed:22572042] [PMC:PMC3380165]
70
mRNA decay factor AUF1 maintains normal aging, telomere maintenance, and suppression of senescence by activation of telomerase transcription. Pont AR, Sadri N, Hsiao SJ, Smith S, Schneider RJ. Molecular cell. 2012 47:15-May. (ICC; Mouse) [PubMed:22633954]
71
Molecular basis of Lys-63-linked polyubiquitination inhibition by the interaction between human deubiquitinating enzyme OTUB1 and ubiquitin-conjugating enzyme UBC13. Sato Y, Yamagata A, Goto-Ito S, Kubota K, Miyamoto R, Nakada S, Fukai S. The Journal of biological chemistry. 2012 287:25860-8. (ICC; Human) [PubMed:22679021] [PMC:PMC3406671]
72
Autocrine regulation of -irradiation-induced DNA damage response via extracellular nucleotides-mediated activation of P2Y6 and P2Y12 receptors. Nishimaki N, Tsukimoto M, Kitami A, Kojima S. DNA repair. 2012 11:657-65. (ICC; Human) [PubMed:22682873]
73
Telomere-driven tetraploidization occurs in human cells undergoing crisis and promotes transformation of mouse cells. Davoli T, de Lange T. Cancer cell. 2012 21:765-76. (ICC; Human) [PubMed:22698402] [PMC:PMC3376354]
74
Targeting radiation-resistant hypoxic tumour cells through ATR inhibition. Pires IM, Olcina MM, Anbalagan S, Pollard JR, Reaper PM, Charlton PA, McKenna WG, Hammond EM. British journal of cancer. 2012 107:291-9. (ICC; Human) [PubMed:22713662] [PMC:PMC3394988]
75
Kruppel-associated Box (KRAB)-associated co-repressor (KAP-1) Ser-473 phosphorylation regulates heterochromatin protein 1 (HP1-) mobilization and DNA repair in heterochromatin. Bolderson E, Savage KI, Mahen R, Pisupati V, Graham ME, Richard DJ, Robinson PJ, Venkitaraman AR, Khanna KK. The Journal of biological chemistry. 2012 287:28122-31. (ICC; Human) [PubMed:22715096] [PMC:PMC3431694]
76
Site-specific DICER and DROSHA RNA products control the DNA-damage response. Francia S, Michelini F, Saxena A, Tang D, de Hoon M, Anelli V, Mione M, Carninci P, d'Adda di Fagagna F. Nature. 2012 488:231-5. (ICC; Mouse, Human) [PubMed:22722852] [PMC:PMC3442236]
77
Radiobiological effectiveness of laser accelerated electrons in comparison to electron beams from a conventional linear accelerator. Laschinsky L, Baumann M, Beyreuther E, Enghardt W, Kaluza M, Karsch L, Lessmann E, Naumburger D, Nicolai M, Richter C, Sauerbrey R, Schlenvoigt HP, Pawelke J. Journal of radiation research. 2012 53:395-403. (ICC; Human) [PubMed:22739009]
78
Enhanced radiosensitivity of head and neck squamous cell carcinoma cells by 1 integrin inhibition. Eke I, Dickreuter E, Cordes N. Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology. 2012 104:235-42. (ICC; Human) [PubMed:22748391]
79
A TRF1-controlled common fragile site containing interstitial telomeric sequences. Bosco N, de Lange T. Chromosoma. 2012 121:465-74. (ICC; Human) [PubMed:22790221] [PMC:PMC3590843]
80
Loss of ATRX, genome instability, and an altered DNA damage response are hallmarks of the alternative lengthening of telomeres pathway. Lovejoy CA, Li W, Reisenweber S, Thongthip S, Bruno J, de Lange T, De S, Petrini JH, Sung PA, Jasin M, Rosenbluh J, Zwang Y, Weir BA, Hatton C, Ivanova E, Macconaill L, Hanna M, Hahn WC, Lue NF, Reddel RR, Jiao Y, Kinzler K, Vogelstein B, Papadopoulos N,. PLoS genetics. 2012 8:e1002772. (ICC; Human) [PubMed:22829774] [PMC:PMC3400581]
81
Postmitotic neurons develop a p21-dependent senescence-like phenotype driven by a DNA damage response. Jurk D, Wang C, Miwa S, Maddick M, Korolchuk V, Tsolou A, Gonos ES, Thrasivoulou C, Saffrey MJ, Cameron K, von Zglinicki T. Aging cell. 2012 11:996-1004. (ICC, IHC-Fr; Mouse) [PubMed:22882466] [PMC:PMC3533793]
82
Three-dimensional invasion of human glioblastoma cells remains unchanged by X-ray and carbon ion irradiation in vitro. Eke I, Storch K, Kstner I, Vehlow A, Faethe C, Mueller-Klieser W, Taucher-Scholz G, Temme A, Schackert G, Cordes N. International journal of radiation oncology, biology, physics. 2012 84:e515-23. (ICC; Human) [PubMed:22901381]
83
DNA damage responses following exposure to modulated radiation fields. Trainor C, Butterworth KT, McGarry CK, McMahon SJ, O'Sullivan JM, Hounsell AR, Prise KM. PloS one. 2012 7:e43326. (ICC; Human) [PubMed:22912853] [PMC:PMC3422245]
84
53BP1 is a haploinsufficient tumor suppressor and protects cells from radiation response in glioma. Squatrito M, Vanoli F, Schultz N, Jasin M, Holland EC. Cancer research. 2012 72:5250-60. (IHC; Mouse) [PubMed:22915756]
85
The autophagy-senescence connection in chemotherapy: must tumor cells (self) eat before they sleep?. Goehe RW, Di X, Sharma K, Bristol ML, Henderson SC, Valerie K, Rodier F, Davalos AR, Gewirtz DA. The Journal of pharmacology and experimental therapeutics. 2012 343:763-78. (ICC; Human) [PubMed:22927544] [PMC:PMC3500537]
86
Ploidy and large-scale genomic instability consistently identify basal-like breast carcinomas with BRCA1/2 inactivation. Popova T, Mani E, Rieunier G, Caux-Moncoutier V, Tirapo C, Dubois T, Delattre O, Sigal-Zafrani B, Bollet M, Longy M, Houdayer C, Sastre-Garau X, Vincent-Salomon A, Stoppa-Lyonnet D, Stern MH. Cancer research. 2012 72:5454-62. (ICC; Human) [PubMed:22933060]
87
Necrosis-like death can engage multiple pro-apoptotic Bcl-2 protein family members. Tischner D, Manzl C, Soratroi C, Villunger A, Krumschnabel G. Apoptosis : an international journal on programmed cell death. 2012 17:1197-209. (ICC; Mouse) [PubMed:22971741]
88
From single-strand breaks to double-strand breaks during S-phase: a new mode of action of the Escherichia coli Cytolethal Distending Toxin. Fedor Y, Vignard J, Nicolau-Travers ML, Boutet-Robinet E, Watrin C, Salles B, Mirey G. Cellular microbiology. 2013 15:15-Jan. (ICC; Human) [PubMed:22978660]
89
SPOC1 modulates DNA repair by regulating key determinants of chromatin compaction and DNA damage response. Mund A, Schubert T, Staege H, Kinkley S, Reumann K, Kriegs M, Fritsch L, Battisti V, Ait-Si-Ali S, Hoffbeck AS, Soutoglou E, Will H. Nucleic acids research. 2012 40:11363-79. (ICC; Human) [PubMed:23034801] [PMC:PMC3526275]
90
Alteration/deficiency in activation-3 (Ada3) plays a critical role in maintaining genomic stability. Mirza S, Katafiasz BJ, Kumar R, Wang J, Mohibi S, Jain S, Gurumurthy CB, Pandita TK, Dave BJ, Band H, Band V. Cell cycle (Georgetown, Tex.). 2012 11:4266-74. (WB; Mouse) [PubMed:23095635] [PMC:PMC3524221]
91
RECQ1 is required for cellular resistance to replication stress and catalyzes strand exchange on stalled replication fork structures. Popuri V, Croteau DL, Brosh RM, Bohr VA. Cell cycle (Georgetown, Tex.). 2012 11:4252-65. (ICC; Human) [PubMed:23095637] [PMC:PMC3524220]
92
The TEL patch of telomere protein TPP1 mediates telomerase recruitment and processivity. Nandakumar J, Bell CF, Weidenfeld I, Zaug AJ, Leinwand LA, Cech TR. Nature. 2012 492:285-9. (ICC; Human) [PubMed:23103865] [PMC:PMC3521872]
93
Primary microcephaly, impaired DNA replication, and genomic instability caused by compound heterozygous ATR mutations. Mokrani-Benhelli H, Gaillard L, Biasutto P, Le Guen T, Touzot F, Vasquez N, Komatsu J, Conseiller E, Pcard C, Gluckman E, Francannet C, Fischer A, Durandy A, Soulier J, de Villartay JP, Cavazzana-Calvo M, Revy P. Human mutation. 2013 34:374-84. (ICC; Human) [PubMed:23111928]
94
Endoglin (CD105) contributes to platinum resistance and is a target for tumor-specific therapy in epithelial ovarian cancer. Ziebarth AJ, Nowsheen S, Steg AD, Shah MM, Katre AA, Dobbin ZC, Han HD, Lopez-Berestein G, Sood AK, Conner M, Yang ES, Landen CN. Clinical cancer research : an official journal of the American Association for Cancer Research. 2013 19:170-82. (ICC, IHC; Mouse) [PubMed:23147994] [PMC:PMC3537868]
95
Impact of histone H4 lysine 20 methylation on 53BP1 responses to chromosomal double strand breaks. Hartlerode AJ, Guan Y, Rajendran A, Ura K, Schotta G, Xie A, Shah JV, Scully R. PloS one. 2012 7:e49211. (ICC; Mouse) [PubMed:23209566] [PMC:PMC3509127]
96
Loss of PIDD limits NF-B activation and cytokine production but not cell survival or transformation after DNA damage. Bock FJ, Krumschnabel G, Manzl C, Peintner L, Tanzer MC, Hermann-Kleiter N, Baier G, Llacuna L, Yelamos J, Villunger A. Cell death and differentiation. 2013 20:546-57. (ICC; Mouse) [PubMed:23238565] [PMC:PMC3595480]
97
The histone methyltransferase MMSET regulates class switch recombination. Pei H, Wu X, Liu T, Yu K, Jelinek DF, Lou Z. Journal of immunology (Baltimore, Md. : 1950). 2013 190:756-63. (WB; Mouse) [PubMed:23241889]
98
The chromatin remodeler p400 ATPase facilitates Rad51-mediated repair of DNA double-strand breaks. Courilleau C, Chailleux C, Jauneau A, Grimal F, Briois S, Boutet-Robinet E, Boudsocq F, Trouche D, Canitrot Y. The Journal of cell biology. 2012 199:1067-81. (ICC; Human) [PubMed:23266955] [PMC:PMC3529529]
99
BRCA1 deficiency in skin epidermis leads to selective loss of hair follicle stem cells and their progeny. Sotiropoulou PA, Karambelas AE, Debaugnies M, Candi A, Bouwman P, Moers V, Revenco T, Rocha AS, Sekiguchi K, Jonkers J, Blanpain C. Genes & development. 2013 27:39-51. (ICC, IHC; Mouse) [PubMed:23271346] [PMC:PMC3553282]
100
Telomere Length and Telomerase Activity Impact the UV Sensitivity Syndrome Xeroderma Pigmentosum C. Stout GJ, Blasco MA. Cancer research. 2013 73:1844-54. (Mouse) [PubMed:23288511]
more

Viewing 1-25 of 108 items
TP53BP1 / 53BP1 Antibody - Anti-TP53BP1 / 53BP1 antibody IHC of human kidney. Immunohistochemistry of formalin-fixed, paraffin-embedded tissue after heat-induced antigen retrieval. Antibody concentration 5 ug/ml.  This image was taken for the unconjugated form of this product. Other forms have not been tested.
Select
Rabbit Polyclonal to Human TP53BP1 / 53BP1
Mouse, Human
ICC, IHC, IHC-P, WB
Unconjugated
100µl   1mg/ml   $485.00
TP53BP1 / 53BP1 Antibody - Anti-TP53BP1 / 53BP1 antibody IHC of human kidney. Immunohistochemistry of formalin-fixed, paraffin-embedded tissue after heat-induced antigen retrieval. Antibody concentration 5 ug/ml.  This image was taken for the unconjugated form of this product. Other forms have not been tested.
Select
Rabbit Polyclonal to Human TP53BP1 / 53BP1
Mouse, Human
ICC, IHC, IHC-P, WB
Biotin Conjugated
100µl   $365.00
TP53BP1 / 53BP1 Antibody - Anti-TP53BP1 / 53BP1 antibody IHC of human kidney. Immunohistochemistry of formalin-fixed, paraffin-embedded tissue after heat-induced antigen retrieval. Antibody concentration 5 ug/ml.  This image was taken for the unconjugated form of this product. Other forms have not been tested.
Select
Rabbit Polyclonal to Human TP53BP1 / 53BP1
Mouse, Human
ICC, IHC, IHC-P, WB
DY488 Conjugated
100µl   $365.00
TP53BP1 / 53BP1 Antibody - Anti-TP53BP1 / 53BP1 antibody IHC of human kidney. Immunohistochemistry of formalin-fixed, paraffin-embedded tissue after heat-induced antigen retrieval. Antibody concentration 5 ug/ml.  This image was taken for the unconjugated form of this product. Other forms have not been tested.
Select
Rabbit Polyclonal to Human TP53BP1 / 53BP1
Mouse, Human
ICC, IHC, IHC-P, WB
DY550 Conjugated
100µl   $365.00
TP53BP1 / 53BP1 Antibody - Anti-TP53BP1 / 53BP1 antibody IHC of human kidney. Immunohistochemistry of formalin-fixed, paraffin-embedded tissue after heat-induced antigen retrieval. Antibody concentration 5 ug/ml.  This image was taken for the unconjugated form of this product. Other forms have not been tested.
Select
Rabbit Polyclonal (IgG) to Human TP53BP1 / 53BP1
Fish, Mouse, Goat, Rat, Human, Primate
IF, IHC, IHC-P, WB
Unconjugated
100µl   1mg/ml   $425.00
TP53BP1 / 53BP1 Antibody - Anti-TP53BP1 / 53BP1 antibody IHC of human kidney. Immunohistochemistry of formalin-fixed, paraffin-embedded tissue after heat-induced antigen retrieval. Antibody concentration 5 ug/ml.  This image was taken for the unconjugated form of this product. Other forms have not been tested.
Select
Rabbit Polyclonal (IgG) to Human TP53BP1 / 53BP1
Fish, Mouse, Goat, Rat, Human, Primate
Flo, ICC, IF, IHC, IHC-P, WB
Biotin Conjugated
100µl   $365.00
TP53BP1 / 53BP1 Antibody - Anti-TP53BP1 / 53BP1 antibody IHC of human kidney. Immunohistochemistry of formalin-fixed, paraffin-embedded tissue after heat-induced antigen retrieval. Antibody concentration 5 ug/ml.  This image was taken for the unconjugated form of this product. Other forms have not been tested.
Select
Rabbit Polyclonal to Human TP53BP1 / 53BP1
Fish, Mouse, Goat, Rat, Human, Primate
Flo, ICC, IF, IHC, IHC-P, WB
DY550 Conjugated
100µl   0.83mg/ml   $365.00
TP53BP1 / 53BP1 Antibody - Anti-TP53BP1 / 53BP1 antibody IHC of human kidney. Immunohistochemistry of formalin-fixed, paraffin-embedded tissue after heat-induced antigen retrieval. Antibody concentration 5 ug/ml.  This image was taken for the unconjugated form of this product. Other forms have not been tested.
Select
Rabbit Polyclonal to Human TP53BP1 / 53BP1
Mouse, Human
Flo, ICC, IF, IHC, IHC-P, WB
DY488 Conjugated
100µl   $365.00
TP53BP1 / 53BP1 Antibody - Anti-TP53BP1 / 53BP1 antibody IHC of human kidney. Immunohistochemistry of formalin-fixed, paraffin-embedded tissue after heat-induced antigen retrieval. Antibody concentration 5 ug/ml.  This image was taken for the unconjugated form of this product. Other forms have not been tested.
Select
Rabbit Polyclonal to Human TP53BP1 / 53BP1
Mouse, Human
Flo, ICC, IF, IHC, IHC-P, WB
DY650 Conjugated
100µl   $365.00
TP53BP1 / 53BP1 Antibody - Anti-TP53BP1 / 53BP1 antibody IHC of human skeletal muscle. Immunohistochemistry of formalin-fixed, paraffin-embedded tissue after heat-induced antigen retrieval. Antibody concentration 5 ug/ml.
Select
Rabbit Polyclonal (IgG) to Human TP53BP1 / 53BP1
Human
IHC, IHC-P, WB
Unconjugated
50µl   1mg/ml   $425.00
TP53BP1 / 53BP1 Antibody - Detection of Human and Mouse Phospho 53BP1 (S25) by Immunohistochemistry. Sample: FFPE sections of human stomach carcinoma (left) and mouse teratoma (right). Antibody: Affinity purified rabbit anti- Phospho 53bp1 (S25) used at a dilution of 1:1000 (1 ug/ml). Detection: DAB.
Select
Rabbit Polyclonal (IgG) to Human TP53BP1 / 53BP1
Mouse, Human
IHC, IP, WB
Unconjugated
100µl   0.2mg/ml   $415.00
TP53BP1 / 53BP1 Antibody - Detection of Human 53BP1 by Immunohistochemistry. Sample: FFPE section of human breast carcinoma. Antibody: Affinity purified rabbit anti-53BP1 used at a dilution of 1:1000 (1 ug/ml). Detection: DAB.
Select
Goat Polyclonal (IgG) to Human TP53BP1 / 53BP1
Human
IHC, IP
Unconjugated
100µl   1mg/ml   $395.00
TP53BP1 / 53BP1 Antibody - IHC of paraffin-embedded colon cancer tissues using TP53BP1 mouse monoclonal antibody with DAB staining.
Select
Mouse Monoclonal [clone 6B3E10] (IgG1) to Human TP53BP1 / 53BP1
Human
ELISA, Flo, IHC, WB
Unconjugated
100µg   1mg/ml   $365.00
TP53BP1 / 53BP1 Antibody - Immunohistochemical analysis of 53BP1 staining in human breast cancer formalin fixed paraffin embedded tissue section. The section was pre-treated using heat mediated antigen retrieval with sodium citrate buffer (pH 6.0). The section was then incubated with the antibody at room temperature and detected using an HRP conjugated compact polymer system. DAB was used as the chromogen. The section was then counterstained with hematoxylin and mounted with DPX.
Select
Rabbit Polyclonal to Human TP53BP1 / 53BP1
Mouse, Rat, Human
ICC, IF, IHC, IHC-P, WB
Unconjugated
100µl   1mg/ml   $245.00
TP53BP1 / 53BP1 Antibody - Immunohistochemistry of paraffin-embedded rat kidney tissue.
Select
Rabbit Polyclonal (IgG) to Human TP53BP1 / 53BP1
Mouse, Rat, Human
IF, IHC, WB
Unconjugated
50µl   $235.00; 100µl   $315.00; 200µl   2.01mg/ml   $425.00
TP53BP1 / 53BP1 Antibody - Immunohistochemistry analysis of paraffin-embedded human colon carcinoma, using 53BP1 (Phospho-Ser25) Antibody. The picture on the right is blocked with the phospho peptide.
Select
Rabbit Polyclonal (IgG) to Human TP53BP1 / 53BP1
Mouse, Rat, Human
IF, IHC, Peptide-ELISA
Unconjugated
50µl   1mg/ml   $265.00; 100µl   1mg/ml   $325.00
TP53BP1 / 53BP1 Antibody - IHC of paraffin-embedded colon cancer tissues using TP53BP1 mouse monoclonal antibody with DAB staining.
Select
Mouse Monoclonal [clone 6B3E10] (IgG1) to Human TP53BP1 / 53BP1
Human
ELISA, Flo, IHC, WB
Unconjugated
100µl   $365.00
TP53BP1 / 53BP1 Antibody - Immunohistochemistry: 53BP1 Antibody (6B3E10) - Immunohistochemical analysis of paraffin-embedded endometrial cancer tissues using TP53BP1 mouse mAb with DAB staining.
Select
Mouse Monoclonal [clone 6B3E10] (IgG1) to Human TP53BP1 / 53BP1
Human
Flo, IHC, IHC-P, WB
Unconjugated
100µl   1mg/ml   $335.00
TP53BP1 / 53BP1 Antibody - TP53BP1 / 53BP1 antibody. IHC(P): Human Intestinal Cancer Tissue.
Select
Rabbit Polyclonal to Human TP53BP1 / 53BP1
Rabbit, Mouse, Sheep, Bovine, Horse, Human, Monkey
ICC, IHC, IHC-P, WB
Unconjugated
100µg   200µl   0.5mg/ml   $305.00
TP53BP1 / 53BP1 Antibody
Select
Rabbit Polyclonal (IgG) to Human TP53BP1 / 53BP1
Mouse, Rat, Human
ELISA, IF, IHC, WB
Unconjugated
100µl   1mg/ml   $325.00; 200µl   1mg/ml   $375.00
Select
Rabbit Polyclonal to Human TP53BP1 / 53BP1
Mouse, Human
ICC, IF, IHC, IHC-P, WB
Unconjugated
100µg   $590.00
Select
Rabbit Polyclonal (IgG) to Human TP53BP1 / 53BP1
Human, Monkey
ICC, IF, IHC, WB
Unconjugated
100µl   $530.00
Select
Rabbit Polyclonal (IgG) to Human TP53BP1 / 53BP1
Human, Monkey
Flo, ICC, IF, WB
Unconjugated
100µl   $575.00
TP53BP1 / 53BP1 Antibody - Western blot of 53BP1 antibody
Select
Rabbit Polyclonal (IgG) to Human TP53BP1 / 53BP1
Mouse, Rat, Human
ELISA, IF, IHC, WB
Unconjugated
50µl   1mg/ml   $235.00; 100µl   1mg/ml   $265.00; 200µl   1mg/ml   $335.00
TP53BP1 / 53BP1 Antibody - Placenta Villi 40X.  This image was taken for the unconjugated form of this product. Other forms have not been tested.
Select
Rabbit Polyclonal to Human TP53BP1 / 53BP1
Mouse, Rat, Human
ICC, IHC, IHC-P, WB
Unconjugated
100µg   100µl   $335.00

Viewing 1-25 of 108 items


If you do not find the reagent or information you require, please contact customer.support@lsbio.com to inquire about additional products in development.

PLEASE NOTE

For RESEARCH USE ONLY. Not intended for human diagnostic or therapeutic purposes.

The data on this page has been compiled from LifeSpan internal sources, the National Center for Biotechnology Information (NCBI), and The Universal Protein Resource (UniProt).